
Tech Notes for Remote Operation Using NoMachine and
Raspberry Pi

Harry Bloomberg W3YJ
26 March 2024

March 26, 2024 Update
I have upgraded to a Raspberry Pi 5 and Bookworm. There are so many
configuration changes that I wrote a separate document you can download at:
http://www.w1hkj.com/W3YJ/Configuring%20Remote%20Operation%20with%2
0NoMachine%20on%20Bookworm%20on%20Raspberry%20PI.pdf

May 14, 2023 Update
NoMachine has changed the way that UPnP is enabled on a server starting with
Version 8. This support page explains how to do this.
https://kb.nomachine.com/AR04S01122

July 5, 2020 Update
The hardest part of using NoMachine for remote operation is writing the Linux shell
script that is necessary to redirect PulseAudio streams to NoMachine. I have written
a Perl program named write_script.pl to write this script for you. It is available for
download as write_script.tar.gz at http://www.w1hkj.com/W3YJ/ . Once this file is
downloaded, you can extract the Perl script as follows:

tar -xzvf write_script.tar.gz

The write_script.pl Perl program does the following:

• Interrogates your Raspberry Pi for audio sinks and sources. You will want to
use a sink and source associated with the USB soundcard connected to your
radio, or your radio’s internal USB soundcard. To simplify matters, I suggest
you temporarily remove all USB soundcard devices from your Raspberry Pi
except the one your radio uses.

• Provides you with a list of sinks and sources.
• Asks you which sink and source you’d like to redirect to NoMachine.
• Writes a shell script for you that will perform the audio redirection to

NoMachine. You will need to log into your Raspberry Pi using NoMachine to
run this script.

Run the Perl script as follows and follow its directions:

http://www.w1hkj.com/W3YJ/Configuring%20Remote%20Operation%20with%20NoMachine%20on%20Bookworm%20on%20Raspberry%20PI.pdf
http://www.w1hkj.com/W3YJ/Configuring%20Remote%20Operation%20with%20NoMachine%20on%20Bookworm%20on%20Raspberry%20PI.pdf
http://www.w1hkj.com/W3YJ/

perl write_script.pl

May 10 2020 Update
I am now operating an Icom IC-7300 remotely. It is a much better receiver than my
old IC-7200 with superior filtering and noise reduction. With the IC-7300, noise
reduction can be dialed in from Flrig. I find a setting of 3-4 works best with CW.
When the NR is enabled, CW signals just pop out of the passband and are easier to
hear. With the IC-7200, receiver noise increases greatly as you narrow the
receiver’s passband. In the IC-7300 this does not happen nearly as much, especially
if the NR is enabled.

I wish it would be possible to view the IC-7300’s excellent waterfall display
remotely with Open Source software. The ability to make this happen is beyond my
programming abilities. I think this would make a very useful project for anybody
looking for a project. Considering the popularity of the IC-7300, I think it would be
very useful for many hams.

I have solved the mystery of why you must disable and then reenable the audio in
NoMachine after running the Linux script to redirect audio from you receiver to
NoMachine to be streamed back to you. By default, NoMachine is looking for audio
from you remote computer’s speaker. Disabling and then reenabling NoMachine
audio causes your remote NoMachine client to use your Pi’s new audio streaming
configuration instead.

It is important to use remotely controlled wi-fi power sockets on your radio and
Raspberry Pi and to have your Raspberry Pi hard-wired to your home network’s
router with a cable. A few times I’ve not been able to turn on my radio remotely
because the wi-fi power sockets were not showing up in the iPhone app I use to
control them. I logged onto the Raspberry Pi, connected to the router through its
web app, and forced the router to reboot. Had the Pi been connected with wi-fi like
the power sockets, it’s likely that I would not have been able to log onto it either. A
few times, I’ve not been able to log onto the Pi at all for unknown reasons. Cycling
the power remotely forced a reboot that corrected this situation. Do this only as a
last resort because of the possibility of corrupting your Pi’s SD card.

Flrig has a built-in utility to memorize frequencies and modes. This simplifies
jumping around to your favorite frequency. You can get to it from the
Memory->Manage menu.

I am writing this in the middle of the coronavirus pandemic. I’ve not been able to
physically get to my station for two months due to my state’s stay-at-home order
which I take seriously and respect. The remote setup has allowed me to stay on the
air and make many contacts. Otherwise I would have been burned out from
watching too many reruns of Star Trek.

Introduction
NoMachine is software that allows you connect between computers running a
variety of operating systems. You can run NoMachine as a server and accept
incoming connections, or as a client to log onto remote systems. NoMachine is
available for free personal use at http://www.nomachine.com . NoMachine
connections use the NX protocol, which is based upon SSL, so remote sessions are
encrypted and secure. NoMachine can be installed on all major operating systems,
including Windows, MacOS, Linux, and Android.

The NoMachine server for Raspbian, the Linux distribution that runs on the
Raspberry Pi, has the ability to interface with a Linux PulseAudio streaming audio
server. This allows us to use a NoMachine server to stream audio coming into and
out of a Raspberry Pi. We can not only use NoMachine to listen to audio from an
amateur radio transceiver, we can send audio into the transceiver for voice contacts.

NoMachine’s streaming audio capabilities are primarily intended for logging onto a
remote system for two-way video or VoIP conferencing. This means that by default,
audio on the remote system’s output device, most likely a speaker, is streamed back
to the speakers or headphones on the user’s computer. Audio from the mic of the
user’s computer is streamed to the mic of the remote system.

http://www.nomachine.com/

In amateur radio use, we instead want audio from the user’s NoMachine client sent
to the mic input of a radio connected to the NoMachine server on the Raspberry Pi.
This might be audio going into a radio’s mic input from a USB soundcard, or more
commonly in newer radios, to the radio’s built-in USB audio interface. Inversely, we
want output audio from the radio connected to the Raspberry Pi to be streamed to
headphones or a speaker on the user’s computer. This audio might be sampled by a
USB soundcard connected to the Raspberry Pi or in more modern radios, this might
be output by a built-in USB audio interface. We use Linux shell commands to
reconfigure NoMachine’s interface to PulseAudio on the Raspberry PI to redirect
audio streams to and from the NoMachine program running on the user’s computer.

Please see Figure 1 for an overview of the entire remote operation system
architecture. Figure 2 shows details of software inside the Raspberry Pi.
Flrig is used for control of the remote radio. Actual operating is done with the Fldigi
and WSJT-X programs for digital modes and CW. For voice operations, you can use
the mic to the client computer for audio to be streamed to the Raspberry Pi.

Install PulseAudio Before Installing NoMachine
According to NoMachine, you should install PulseAudio on your Raspberry Pi and
other ARM systems before you install NoMachine, otherwise you won’t be able to
stream audio. NoMachine does provide a workaround, but it’s simpler to install the
software in the preferred order.
https://www.nomachine.com/AR07N00896

Identifying PulseAudio Sources and Sinks
You will need to write a short Linux shell script on your Raspberry Pi to connect
your radio’s audio to NoMachine so that audio can then be streamed to and from
your remote device. To do this you will need to find names of your radio’s input and
output devices.

PulseAudio describes audio streams as either sources or sinks. A source is an audio
input like a mic that generates sound. A sink is an audio output device like a
speaker. The first step is to identify the PulseAudio source and sink for the USB
soundcard that is connected to your radio.

The following command will list all your system’s sources and save them to a file
named sources.txt:

pacmd list-sources | grep -e 'index:' -e device.string -e 'name:' > sources.txt

This is the command to list your system’s sinks and save them to a file named
sinks.txt.

pacmd list-sinks | grep -e 'index:' -e device.string -e 'name:' > sinks.txt

https://www.nomachine.com/AR07N00896

On my Raspberry Pi connected to the IC-7200 USB soundcard, my sources are as
follows:

 index: 0
 name: <alsa_output.usb-Burr-Brown_from_TI_USB_Audio_CODEC-00.analog-stereo.monitor>
 device.string = "1"
 * index: 1
 name: <alsa_input.usb-Burr-Brown_from_TI_USB_Audio_CODEC-00.analog-stereo>
 device.string = "front:1"
 index: 2
 name: <alsa_output.platform-soc_audio.analog-mono.monitor>
 device.string = "0"

Based up this, we see that the input USB device to the IC-7200 is named
“alsa_input.usb-Burr-Brown_from_TI_USB_Audio_CODEC-00.analog-stereo”.

Here is the list of sinks on my Raspberry Pi:

* index: 0
 name: <alsa_output.usb-Burr-Brown_from_TI_USB_Audio_CODEC-00.analog-stereo>
 device.string = "front:1"
 index: 1
 name: <alsa_output.platform-soc_audio.analog-mono>
 device.string = "hw:0"

We can see that the output USB device to the IC-7200 is named “alsa_output.usb-
Burr-Brown_from_TI_USB_Audio_CODEC-00.analog-stereo”.

Writing a Linux Shell Script to Redirect PulseAudio Streams
Now that you’ve identified the audio sources and sinks associated with your radio,
you are now ready to write a short Linux shell script to redirect these streams to
and from NoMachine.

First, we will configure the output from your radio’s USB soundcard as the default
source on your Raspberry Pi:

pacmd set-default-source alsa_input.usb-Burr-Brown_from_TI_USB_Audio_CODEC-00.analog-stereo

We will now redirect the radio’s output to NoMachine to be streamed back to you on
your remote system. NoMachine will always send audio received by the default sink
on the Raspberry Pi to your remote computer, so we must find a way for your
radio’s output audio to be sent to the default sink. Remember, a typical use case for
NoMachine is to connect to a voice conferencing system where the audio output of
the conferencing system is streamed back to your computer. Instead of the output
of the conferencing system, we want the output audio of your radio streamed back
to you.

We can accomplish this by creating a placeholder sink named “dummy” and making
this our default sink. We will then connect the output of our USB soundcard to this
placeholder sink. NoMachine will latch onto the dummy sink because we’ve made it
the default sink and the audio will be streamed by NoMachine back to your remote
system.

pactl load-module module-null-sink sink_name=dummy
pacmd set-default-sink dummy
pacmd load-module module-loopback source=alsa_input.usb-Burr-
Brown_from_TI_USB_Audio_CODEC-00.analog-stereo sink=dummy

Our final step will be to connect your remote computer’s mic to the USB input of
your radio. NoMachine sends audio to the Raspberry Pi using a source named
“nx_voice_out”. Our Linux shell command to redirect this to the radio’s USB input is:

pactl load-module module-loopback source=nx_voice_out.monitor sink=alsa_output.usb-Burr-
Brown_from_TI_USB_Audio_CODEC-00.analog-stereo

Putting it all together, here is my shell script which I call audio_icom.sh. I run this
script whenever I log onto my Raspberry Pi remotely for the first time after
powering up my radio. It is important that your run this only when logging on
remotely because the NoMachine audio streams are active only when you are
actually connecting using NoMachine.

pacmd set-default-source alsa_input.usb-Burr-Brown_from_TI_USB_Audio_CODEC-00.analog-stereo
pactl load-module module-null-sink sink_name=dummy
pacmd set-default-sink dummy
pacmd load-module module-loopback source=alsa_input.usb-Burr-
Brown_from_TI_USB_Audio_CODEC-00.analog-stereo sink=dummy
pactl load-module module-loopback source=nx_voice_out.monitor sink=alsa_output.usb-Burr-
Brown_from_TI_USB_Audio_CODEC-00.analog-stereo

If you ever wish to completely reset the PulseAudio settings, perform the following
Linux shell command:

pulseaudio -k

Log out of your Raspberry Pi, and then log in again. You can now run your script to
redirect PulseAudio audio streams to NoMachine.

Connecting to a NoMachine server
An excellent guide to connecting using NoMachine may be found at:
https://www.nomachine.com/getting-started-with-nomachine

To determine the IP address and port on your Raspberry Pi for your NoMachine
connection, run the following commands:

https://www.nomachine.com/getting-started-with-nomachine

sudo /etc/NX/nxserver –upnpmap
sudo /etc/NX/nxserver –upnpstatus

You will see output like the following:
Local IP 192.168.0.116
Gateway IP 192.168.0.1
External IP 173.89.234.197
NX port 4000 mapped to: 173.89.234.xxx:24560

Use the local IP address when you’re on your local network, the NX address with the
external PI address and port mapping, when you’re outside your network.

You can also obtain this info by right-clicking on the NoMachine icon on the
Raspberry Pi’s task bar and selecting the “Show the server status” menu.

Note that it might take a few minutes after starting the NoMachine server for the
External IP and port mapping to appear.

If you are behind a firewall, please look at the following NoMachine Knowledge Base
article:
https://www.nomachine.com/AR11L00827

https://www.nomachine.com/AR11L00827

Figure 1

Figure 2

NoMachine status showing global IP address and port number

	Tech Notes for Remote Operation Using NoMachine and Raspberry Pi
	March 26, 2024 Update
	May 14, 2023 Update
	July 5, 2020 Update
	May 10 2020 Update
	Introduction
	Install PulseAudio Before Installing NoMachine
	Identifying PulseAudio Sources and Sinks
	Writing a Linux Shell Script to Redirect PulseAudio Streams
	Connecting to a NoMachine server

	Figure 1
	Figure 2

